

Published by Al-Nahrain College of Medicine ISSN 1681-6579 Email: iraqijms@colmed-alnahrain.edu.iq http://www.colmed-nahrain.edu.iq/

The Pattern of Bacterial Pathogens & their Antibiotics Sensitivity among Patients with Respiratory Tract Infections

Abdul-Munim N Mohammed MSc

Dept. of Microbiology, College of Medicine, Al -Mustansiriya University, Baghdad, Iraq

Abstract

- **Background** Knowing the bacterial pathogens and their antibiotic sensitivity is an important way of establishing a suitable guideline of treatment of infection.
- **Objectives** To isolate bacterial pathogens from patients with respiratory tract infections (RTI), and to determine the antibiotic sensitivity of isolates.
- Methods Sputum specimens were collected from 145 patients with RTI admitted to Al-Kindy Teaching Hospital from March 2011 to January 2012. Out of these, 88 (60.7%) patients (age rang 17-59 years) had an established bacterial etiology, and of these, 57 (64.8%) were males and 31 (35.2%) females. All isolates were diagnosed according to bacteriological and biochemical standard methods. For identified of antimicrobial susceptibility used from Kirby Bauer method according to (NCCLS).
- **Results** *Klebsiella* species and *Pseudomonas aeruginosa* were the most common isolates among the Gram negative pathogens (26.2% and 11.7% respectively), followed by *Escherichia coli* and *Proteus* species, while *Streptococcus pneumonia* was the most common isolate among the Gram positive organisms, identified in (15.2%) followed by *Staphylococcus aureus* and Streptococcus pyogenes. High rates of resistance to Amoxicillin and Cephalothin were demonstrated by all bacteria, whereas most isolates were found to be highly sensitive to Amikacin, Ciprofloxacin and Tobramycin. In contrast, Cefotaxim, Tetracyciln, Gentamycin and Erythromicin were less effect against most of isolates.
- **Conclusions** *Klebsiella* spp. was the most common pathogens, whereas *Streptococcus pneumonia* which ranks as second common pathogens from patients with RTI in the present study. Amikacin, Ciprofloxacin and Tobramycin were the most effect antibiotics in *vitro* against tested bacteria. Conversely, no or less effect of other antibiotic agents was obtained making them not to be considered the drugs of choice in treatment of patients with RTI.

Keywords Bacterial pathogens, Antibiotics resistance, Patients RTIs.

Introduction

Respiratory tract infection (RTI) is defined as any infectious disease of the upper or lower respiratory tract. Upper respiratory tract infections (URTIs) include the common cold, laryngitis, pharyngitis/tonsillitis, acute rhinitis, acute rhinosinusitis and acute otitis media. Lower respiratory tract infections (LRTIs) include acute bronchitis, bronchiolitis, pneumonia and tracheitis ⁽¹⁾. The Centers for Disease Control and Prevention (CDC), World Health Organization (WHO) and Institute of Medicine have identified antimicrobial resistance as a major public health threat ⁽²⁻⁴⁾. Antibiotic is credited with dramatic reduction in the morbidity and mortality associated with many bacterial infections, its abuse has resulted in the rapid emergence of resistant strains that reduce the effectiveness of many antibiotics ⁽⁵⁾.

Antibiotics are commonly prescribed for RTIs in adults and children in primary care. General Practice Consultation Rates (GPCR) in England and Wales show that a quarter of the population will visit their GPCR because of an RTI each year ⁽⁶⁾. Therapy for community acquired respiratory tract infections is often empirical. However, increasing antibiotic resistance in frequently isolated respiratory tract pathogens complicated the selection process of antimicrobial agents ⁽⁷⁾. Pharmaco-economic analyses have confirmed that bacteriologically more effective antibiotics can reduce overall management costs. Particularly with respect to consequential morbidity and hospital admission. Application of these principles would positively benefit therapeutic outcomes, resistance avoidance and management costs and will more accurately guide antibiotic choices by individuals, formulary, and guideline committees⁽⁸⁾.

of these, 88 (60.7%) patients (age rang 17-59 years) had an established bacterial etiology, and of these, 57 (64.8%) were males and 31 (35.2%) females.

The sputum samples were collected in sterile universal plastic containers and sent to the Diagnostic Microbiology Laboratory of Al-Kindy Teaching Hospital were analyzed. All isolates were diagnosed according to wellknown established bacteriological methods ⁽⁹⁾. Biochemical identification of bacterial species was performed by standard methods ⁽¹⁰⁾.

Antimicrobial susceptibility test: The isolates were subjected to susceptibility testing to the commonly used antimicrobial agents by Kirby -Bauer method according to criteria of National Committee for Clinical Laboratory Standard (NCCLS)⁽¹¹⁾, and their results of zone growth inhibition were compared to that in table 1.

Statistics: Descriptive statistical analysis (number and percentage) were used to calculate for type of bacterial isolates and their sensitivity results.

Methods

Sputum specimens were collected from 145 patients with RTI admitted to Al-Kindy Teaching Hospital from March 2011 to January 2012. Out

Table 1. Zone size and their interpretation (National Committee for clinical laboratory Standard)
(NCCLS)

Autimicrobial agent (symbol)	Disc potency	Diameter of zone of inhibition (mm)		
Antimicrobial agent (symbol)		Sensitive	Intermediate	Resistant
Amikacin (AN)	30 µg	≥ 17	15-16	≤14
Amoxicillin (AMX)	10 µg	≥18	14-17	≤ 13
Ciprofloxacin (CIP)	5 µg	≥21	16-20	≤ 15
Gentamycin (GM) Tobramycin	10 µg	≥15	13-14	≤ 12
(TM)	10 µg	≥15	13-14	≤12
Cephalothin (CF)	30 µg	≥ 18	15-17	≤ 14
Cefotaxim (CTX)	30 µg	≥19	15-18	≤ 14
Tetracycline (TE)	30 µg	≥ 19	15-18	≤ 14
Erythromicin (ER)	15 µg	≥ 23	14-22	≤ 13

Results

A total of 145 patients with RTI were examined, the bacterial etiology agents were identified in 88(60.7%) patients. In our study since the number of males was higher than females (64.8%), so the number of isolates was comparatively higher in males than females. From 88 positive cases with RTI, 103 bacterial strains were isolated. Out of these, 64 (62.1%) were Gram-negative bacilli and 39 (37.9%) were Gram-positive cocci. Indeed some sputum samples contained more than one bacterium. These results as shown in figure 1.

IRAQI J MED SCI, 2013; VOL.11(2)

Figure 1. Distribution of the Microorganism isolates from 88 positive cases

Table 2 shows the Klebsiella species and Pseudomonas aeruginosa were the most prevalent (36.9% and 16.5% respectively) among the Gram-negative bacilli, followed by Escherichia coli (5.8%) and Proteus species (2.9%). Streptococcus pneumonia was the most prevalent among Gram-positive cocci (21.3%), followed by Staphylococcus aureus and Streptococcus pyogenes (11.7% and 4.9% respectively).

Bacterial species		No. of isolates	%
Gram-negative bacilli	Klebsiella species	38	36.9
	Pseudomonas aeruginosa	17	16.5
	Escherichia coli	6	5.8
	Proteus species	3	2.9
Gram-positive <i>cocci</i>	Streptococcus pneumonia	22	21.3
	Staphylococcus aureus	12	11.7
	Streptococcus pyogenes	5	4.9

Table 2. Distribution of the	e Bacterial isolates from	sputum of patients with RTI

The drug sensitivity to bacterial pathogen isolates from patients with RTIs:

High rates of resistance to Amoxicillin and Cephalothin was demonstrated by all bacteria, whereas most isolates were found to be highly sensitive to Amikacin, Ciprofloxacin and Tobramycin. Klebsiella species showed high resistance to most of antibiotic agents except Amikacin, Ciprofloxacin and Tobramycin were the most potent activity against this strain.

*Streptococcus pneumonia*e, showed moderate to high resistance against Cephalothin, Tetracycline and Erythromicin, while good effect to other antibiotic agents, which were used in this study.

Pseudomonas aeruginosa, Streptococcus pyogenes and *Escherichia coli* isolates exhibited strong resistance to most tested antibiotic types except Amikacin, Ciprofloxacin and Tobramycin revealed good efficacy.

Most of isolates showed good susceptibility to Cefotaxim and Gentamicin except Klebsiella species (18.4%) and Escherichia coli (33.3%) which were poor efficacy to these antibiotics agents. Majority of isolates were highly resistance to Tetracycline and Erythromicin except Proteus species and Staphylococusaureus showed fully sensitive to these antibiotic agents. These results, as presented in figures (2-8).

Mohammed, Bacterial Pathogens & their ...

Figure 2. Susceptibility of Klebsiella *species* to antibiotics

Figure 3: Susceptibility of *Pseudomonas aeruginosa* to antibiotics

Figure 4. Susceptibility of E.coli to antibiotics

Figure 5. Susceptibility of *Proteus species* to antibiotics

Figure 6: Susceptibility of *Streptococcus* pneumoniae *to* antibiotics

Figure 7. Susceptibility of *Staphylococcus aureus* to antibiotics

Figure 8: Susceptibility of Streptococcus pyogenes to antibiotics

Discussion

The current study showed a high percentage of Gram-negative bacteria (62.1%) among patients with RTIs. This finding was higher than that reported by Schneeberger *et al.*⁽¹²⁾ (8%), while it was lower than that reported by Okesola and Ige ⁽¹³⁾, (93%). These differences in these results may be due to the same patients were under antimicrobial treatment at the time of specimens collection.

It is clear from this work that the Klebsiella species and Pseudomonas aeruginosa were the most prevalent among the Gram negative pathogens (36.9% and 16.5% respectively), followed by Escherichia coli (5.8%) and Proteus species (2.9%). Streptococcus pneumonia was the most prevalent among the Gram-positive organisms identified in (21.3%) followed by Streptococcus Staphylococcus aureus and pyogenes (11.7 % and 4.9% respectively). These results are approximately in agreement with Okesola and Ige, ¹³ but it was different with the finding reported by other researchers (^{14,15)}.

High rates of resistance to AMX and CF were demonstrated by all bacteria, while most isolates were found to be highly susceptible to AN, CIP and TM. In contrast, (CTX, TE, GM and ER) were less effect against most of frequently isolates. Antimicrobial resistance by respiratory tract infections has increased worldwide due to excessive use of antimicrobial agents. However, increasing antibiotic resistance in frequently isolated respiratory tract pathogens complicated the selection process of antimicrobial agents ^(7,8). Klebsiella species being the high resistance to most of antibiotic agents except AN, CIP and TM were the most potent activity against this strain. This finding is different with respect to what was mentioned by most previous studies (13,16). Streptococcus pneumoniae showed moderate to high resistance against CF, TE and ER, while good effect to other antibiotic agents, which were used in this study. These results are approximately in agreement with other research ⁽¹³⁾. TE showed the poor efficacy against Streptococcus pneumonia (45.4%). This result was higher than that reported by author ⁽¹⁷⁾, while it was lower than that reported by other (18)

Pseudomonas aeruginosa isolates showed complete resistance to each of AMX, CF and TE. This finding was in consistent with study of Levy ⁽¹⁹⁾,who proved that some strains of Pseudomonas aeruginosa were resistant to most every antibiotic now available. Pseudomonas aeruginosa also, showed low resistance to GM, CTX, CIP and TM. These results were in disagreement with reported by many other studies ^(17,20,21). AN showed the most potent activity against *Pseudomonas aeruginosa* (82.3%). This result was compatible with other reported ⁽²⁰⁾, while lower prevalent of resistant (10%) to this agent was proved by ⁽²¹⁾.

Based on the findings of our study, we conclude that Klebsiella species and *Streptococcus pneumonia*e can be considered an important etiology agent of respiratory tract infections, having a high rate of drug resistance. AN, CIP and TM were the most effect antibiotics in *vitro* against tested bacteria. Conversely, no or less effect of other antibiotic agents which were used in this study thus should not be considered the drugs of choice in the treatment of patients with RTI in our study.

References

- 1. Eccles MP, Grimshaw JM, Johnston M, *et al.* Applying psychological theories to evidence-based clinical practice: Identifying factors predictive of managing upper respiratory tract infections without antibiotics". Implement Sci. 2007; 2: 26.
- US Department of Health and Human Services. Preventing emerging infectious diseases: A strategy for the 21stcentury. MMWR Morb Mortal Wkly Rep 1998; 47 (No.RR-15). CDC Web site. http://www. cdc. gov /MMWR /pdf/rr/rr4715. pdf. Accessed March 5, 2009.
- World Health Organization. Drug resistance threatens to reverse medical progress. WHO Web site. <u>http://www.who.int/inf-pr-</u> 2000/en/pr- 2000-41.html. Accessed March 5, 2009.
- Institute of Medicine. Microbial threats to health: emergence, detection, and response. IOM Web site. http://www.iom.edu/CMS3783/3919/5381/6146.aspx. Accessed March 5, 2009.
- Lim VKE. Antibiotic resistance and its control in the Far East. Antibiotics Chemotherapy. J Antimicrob Chemothe. 2001 Sep; 5(2): 1-3.
- **6.** Ashworth M, Charlton J, Ballard K, *et al.* Variations in antibiotic prescribing and consultation rates for acute respiratory infection in UK general practices 1995-2000. Br J General Pract. 2005; 55: 603-8.
- Guthrie R. Community acquired lower respiratory tract infections: etiology and treatment. Chest 2001; 20: 2021-34.
- 8. Ball P, Baquero F, Cars O, et al. Concensus group on resistance and prescribing in respiratory tract infection. Antibiotic therapy of community respiratory tract infection: strategies for optimal outcome and

minimized resistance emergence. J Antimicrob Chemothe 2002; 49: 31-40.

- **9.** Collee JG, Marr W. Culture of Bacteria. In: Collee JG, Fraser AG, Marmion BP, et al. (eds). Mackie and McCartney Practical Medical Microbiology. 14th ed. Churchill Livingstone; 1996. p. 113-29.
- Baron EJ, Peterson LR, Finegold SM. Bailey and Scotts. Diagnostic Microbiology, 9th ed, Mosby, 1995; p. 333-52.
- **11.** Bauer AW, Kirby WM, Sherrie JG, et al. Antibiotic susceptibility testing by a standardized single disc method. Am J Clin Pathol. 1996; 45: 493-96.
- 12. Schneeberger PM, Dorigo ZJW, van DZA, et al. Diagnosis of atypical pathogens in patients hospitalized with community-acquired respiratory infection. Scand J Infect Dis. 2004; 36(4): 269-73.
- Okesola AO, Ige OM. Trends in Bacterial pathogens of lower Respiratory infections. Indian J Chest Dis Allied Sci. 2007 Sep; 20: 269-72.
- **14.** Ozylimaz ZE, Akan OA, Gulhan M, et al. Major bacteria of community acquired respiratory tract infections in Turkey. Jpn J infect Dis. 2005; 58: 50-2.
- 15. Liebowitz LD, Slabbert M, Huisamen A. National surveillance programmer on susceptibility patterns of respiratory pathogens in South Africa: amoxifloxacin compared with eight other antimicrobial agents. J Clin Pathol. 2003; 56: 344-47.
- **16.** Quale JM, Landman D, Bradford PA, et al. Molecular epidemiology of a citywide outbreak of extended-

spectrum beta-lactamase-producing Klebsiella pneumoniae infection. Clin Infect Dis 2002; 35(7): 834-41.

- **17.** Reynolds R, Potz N, Colman M, et al. Antimicrobial susceptibility of the pathogens of bacteraemia in the UK and Ireland 2001–2002: the BSAC Bacteraemia Resistance Surveillance Programme. J Antimicrob Chemothe. 2004; 53: 1018-32.
- 18. Shimada K, Nakano K, Igari J, et al. Susceptibilities of bacteria isolated from patients with lower respiratory infectious diseases to antibiotics. Jpn J Antibiot. 2004; 57(3): 213-45.
- **19.** Levy SB. The challenge of antibiotic resistance. Sci Am. 1998; 278: 46-53.
- 20. Gonlugur U, Bakici MZ, Ozdemir L, et al. Retrospective analysis of antibiotic susceptibility patterns of respiratory isolates of Pseudomonas *aeruginosa* in a Turkish University Hospital. <u>http://www.ann-clin.</u> <u>microb.com./content2003; /2/1/5</u>.
- **21.** Pitt TL, Sparrow M, Warner M, et al. Survey of resistance of *Pseudomonas aeruginosa* from UK patients with cystic fibrosis to six commonly prescribed antimicrobial agents. Thorax. 2003; 58: 794-6.

E-mail: dr. abdulmunim@yahoo.com Mobile: 07715194462 Received 31st Jan: 2012: Accepted 12th Sept. 2012.